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Abstract
Using the random phase approximation, we calculate the plasmon frequencies
of an electron gas on a two-dimensional spherical surface in the presence of
a weak magnetic field. We show that the magnetic field results in a coupling
between electronic states with different angular momentum numbers. This
coupling results in a blue-shift of the dipolar plasmon resonance with increasing
magnetic field. We also investigate how the plasmon energies vary as a function
of the number of electrons and radius of the sphere.

1. Introduction

Metallic shell structures are of considerable theoretical and experimental interest because of
their unusual electronic and optical properties [1–5]. In recent years, it has been possible to
manufacture spherical shaped nanostructures ranging from fullerene size to nanosized objects
such as SiO2 balls in opals [6], nanoshells [7] and multielectron bubbles [8, 9]. The motion
of charged particles on such spheres with constant magnetic field along a given axis of the
sphere has been studied previously [10–14]. The energy spectrum has been calculated and
the thermodynamical properties, such as magnetization and magnetic susceptibility, have been
studied rigorously.

For multielectron bubbles in the absence of an applied magnetic field, the electrons move
freely in the direction tangential to the spherical helium surface. The electrons therefore
effectively form a spherical two-dimensional electron gas (S2DEG). A S2DEG can also be
realized in charge droplets [15] and in doped semiconductor particles if carriers accumulate in
a surface layer [16]. In previous work, the many-body properties of such a system have been
investigated using the random phase approximation, and the multipole excitation modes of the
S2DEG have been calculated [17] and the angular momentum dependent dielectric function
of the S2DEG has been derived [18].
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Motivated by these recent works, we will analyse the optical response of the S2DEG in
the presence of a weak uniform magnetic field. In this regime, we can treat the electronic
structure of the system using perturbation theory and obtain a closed expression for the optical
polarizability. We investigate how the dipolar plasmon energy is affected as the magnetic field
or the number of electrons is changed. We show that the energy of the plasmon resonance
increases with increasing magnetic field. We provide a simple physical explanation for the
observed magnetic field dependence of the plasmon energies.

We hope that this observation may stimulate experiments measuring the magneto-optic
effects of the S2DEG. Although the theoretical approach in the present paper is strictly limited
to thin electronic shells, we believe that the physical mechanism responsible for the magnetic
field dependence of the plasmon energies will apply also in other electronic shell structures
such as metallic nanoshells. If this is the case, the application of magnetic fields will provide
an interesting additional means of extrinsic tunability of their plasmonic properties which may
enable new nanophotonic applications.

2. Theory

In this section, we will first describe the effect of a weak magnetic field on the ground state
of the electron gas [14]. We will then use this result to obtain the response properties of the
S2DEG using linear response theory.

The system under investigation is electrons constrained to the surface of a sphere of radius
r0 in the Landau gauge. Throughout this paper, we will assume a closed shell configuration
for the ground state of the electron gas, i.e. all the angular momentum states, until the Fermi
level is fully occupied with two projections of spin. The Fermi angular momentum number LF

determines the number of electrons in the system via N = 2(LF + 1)2 and the surface charge
density is ν = N/4πr2

0 . In the Schrödinger equation, we will use a confining potential of the
form V (r) = 0 for r0 < r < r0 + δr and V (r) → ∞ otherwise. If we assume δr � r0, this
potential describes a shell with infinitesimal thickness; thus the radial and angular variables
of the Schrödinger equation can be separated. If the Fermi level lies below the first excited
level of the radial component of the wavefunction, we can ignore the radial component and put
r = r0 in the remaining angular part of the Hamiltonian H�. This requires δr � ν−1/2 and,
if satisfied, means that we are dealing with an effectively two-dimensional system. Now, we
apply a uniform magnetic field along the z axis of the sphere (θ = 0). Since the system has
rotational symmetry, an eigenfunction can be written as �(θ, φ) = �(θ) exp(imφ), where mh̄
is the eigenvalue of L̂z . We will adopt atomic units in the following analysis (h̄ = e = me = 1,
c = 137). The angular part of the Hamiltonian becomes

H� = 1

2r2
0

[
−	� + 2ip

∂

∂φ
+ p2 sin2 θ

]
. (1)

The Schrödinger equation then takes the form

∂

∂ζ
(1 − ζ 2)

∂�

∂ζ
+

[
ε − 2mp − m2

1 − ζ 2
− p2(1 − ζ 2)

]
� = 0 (2)

upon introducing ζ = cos θ , the dimensionless energy ε = 2r2
0 E and the number of flux

quanta p encircled by the sphere, which is given by
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p = π Br2
0

0
, (3)

where 0 = 2π/e = 2 × 10−15 T m2 is the flux quantum.
The above equation is the well-known spheroidal differential equation [19, 20]. In

the absence of magnetic field, this equation reduces to the standard free rotator problem in
quantum mechanics and the wavefunctions are the spherical harmonics. In the presence of a
weak magnetic field, however, one is able to develop a perturbation theory around the initial
wavefunctions as long as p2 � 4l to get a series of Zeeman-split 2(2l + 1) states with energy
eigenvalues [14]

εlmσ (p) = l(l + 1) + 2 pm +
p2

2

[
1 +

m2

l2

]
+

p2

l
+

20

137π
pσ + O(p4) (4)

and normalized wavefunctions

�lm(p,�) = Ylm(�) + p2

l Yl+2,m(�) + p2

l Yl−2,m(�)√
1 + 2p4

l2

+ O(p4), (5)

where � denotes the spherical angles � = {θ, φ} and (l, m) represents the angular momentum
state. In equation (4), the last term represents the contribution from the spin degrees of freedom
and σ denotes the projection of the spin. This term is much smaller than the others, and will
be neglected in the following.

Our aim in this paper is to use the above perturbed energy eigenvalues and wavefunctions
to calculate the dielectric response function using the random phase approximation (RPA). We
will investigate the behaviour of the optically active dipolar plasmon energy in the presence
of the magnetic field.

In linear response theory, an induced electron density ρind(p,�,ω) is generated when
an external field Vext(�,ω) which couples to the electron density is applied. Its spherical
components can be written as

ρind(p, l, m, ω) = Vext(l, m, ω)DR(p, l, m, ω), (6)

where DR(p, l, m, ω) is the retarded density–density Green function. The Lindhard or
independent electron response function D0

R(p, l, m, ω) takes the form

D0
R(r0, p, l, m, ω) =

∑
l′,m′

∑
L ,M

n(l ′, m ′)(1 − n(L, M))

×
∣∣∣∣
∫

Yl,m(�)�∗
L ,M(p,�)�l′,m′(p,�) d�

∣∣∣∣
2

×

 1

ω + εl′ ,m′ (p)−εL ,M(p)

2r2
0

+ iη
− 1

ω + εL ,M (p)−εl′ ,m′ (p)

2r2
0

+ iη


 . (7)

In this expression, n(l ′, m ′) and n(L, M) denote the occupancy of the initial and final angular
momentum states respectively and (l, m) represents the excitation. The quantity η is an
infinitesimal damping term and εl,m(p) is given by equation (4).

Using the expression (5) for the wavefunctions, the angular integrals can be expressed in
Clebsch–Gordon coefficients and Wigner 3 j symbols. For the present large systems (LF > 20)
and small magnetic fields (p < 5), the dependence of the energy denominators on m ′ and M
is small and can be neglected. The summations over m ′ and M in equation (7) can then be
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done analytically and the response function takes the form

D0
R(r0, p, l, ω) =

∑
l′

∑
L

n(l ′)(1 − n(L))
1

4π

1

1 + 2p4

l′2

1

1 + 2p4

L2

×
[
(2l ′ + 1)(2L + 1)

(
l l ′ L
0 0 0

)2

+ (2l ′ + 1)(2L + 5)

(
l l ′ L + 2
0 0 0

)2 p4

L2

+ (2l ′ − 3)(2L + 1)

(
l l ′ − 2 L
0 0 0

)2 p4

l ′2

+ (2l ′ + 5)(2L + 1)

(
l l ′ + 2 L
0 0 0

)2 p4

l ′2

+ (2l ′ + 1)(2L − 3)

(
l l ′ L − 2
0 0 0

)2 p4

L2

]

×

 1

ω − 	εL ,l′ (p)

2r2
0

+ iη
− 1

ω + 	εL ,l′ (p)

2r2
0

+ iη


 (8)

where the energy denominators are evaluated for m ′ = l ′ and M = l ′ + 1,

	εL ,l′(p) = L(L + 1) − l ′(l ′ + 1) + 2 p +
p2

2

(
(l ′ + 1)2

L2
− 1

)
+ p2

(
1

L
− 1

l ′

)
. (9)

The calculation of the RPA dielectric function can be accomplished in a straightforward
manner by using a Dyson series once we know the Lindhard response function given by
equation (8). The RPA dielectric function has the form

εRPA(r0, p, l, ω) = 1 − v(l, r0)D0
R(r0, p, l, ω). (10)

3. Results and discussion

In the many-body theory of the two-dimensional homogeneous spherical electron gas, two
types of excitation are possible: single-particle excitations and plasmons. In the first case, the
imparted angular momentum is absorbed completely by a single electron and it gets excited
to a higher angular momentum state. On the other hand, a plasmon is a collective excitation
involving all the conduction electrons. In both single-particle excitations and the plasmons,
the excitation is characterized by the angular momentum l and energy ω.

Plasmon resonances appear when the dielectric function defined by equation (10) satisfies
the following two equations:

Im[εRPA(r0, p, l, ω)] = 0, (11)

Re[εRPA(r0, p, l, ω)] = 0. (12)

The first equation means that ω �= 	εL ,l′(p)/2r2
0 , i.e., the plasmon energies lie outside the

region of single-particle excitations. In order to find the values of plasmon energies, one has
to solve equation (12) for successive values of l. In figure 1, we show the calculated plasmon
energies in zero magnetic field, ωl , as a function of l for three spheres with different radii. All
spheres contain 882 electrons and LF = 20. As the radius gets larger, the plasmon energies
decrease for each mode due to the 1/2r2

0 factor in equation (8).
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Figure 1. This figure shows the calculated plasmon energies ωl for the S2DEG as a function of
angular momentum l in zero magnetic field. LF = 20 and the number of electrons is 882. The radii
of the spheres are 3980 au (stars), 5117 au (triangles) and 7960 au (diamonds). The dotted, dashed
and dash–dotted curves represent the plasmon energies obtained from equation (15) by using these
parameters respectively.

For S2DEG electrons localized in a Wigner lattice, plasmons of another type can also
appear [21]. The system can be viewed as a metallic nanoshell with infinitesimal thickness [22–
24]. A general semiclassical approach (SCA) was developed and applied to describe collective
resonances in metallic shell structures [25, 26]. For a spherical shell geometry with a step-
function charge density, the SCA predicts two collective oscillation modes for each component
of the angular momentum. The energies of these plasmons are given by

ω2
l± = ω2

s

[
1 ± 1

2l + 1

√
1 + 4l(l + 1)x2l+1

]
(13)

where ωs = √
2πe2n0/me is the surface plasmon energy and x is the aspect ratio defined as

the ratio between the inner and outer radii of the metallic shell. The quantity n0 represents the
volume electron density. We will be considering only ωl− in equation (13) since the other one
lies far higher in the energy spectrum and would be very difficult to detect experimentally.

If the electron layer has a thickness d of the order of a few nanometres, just like the case
for a multielectron bubble, we can rewrite equation (13) as

ω2
l−(ν, d, r0) = 2πe2ν

dme


1 − 1

2l + 1

√
1 + 4l(l + 1)

(
r0 − d

r0

)2l+1

 , (14)

and take the limit d → 0 to obtain

ω(l) =
√

Ne2

mer3
0

l(l + 1)

2l + 1
. (15)

This result is in perfect agreement with the plasmon dispersion relation derived by Klimin et al
using a simple harmonic oscillator model [27]. In figure 1 we also show for comparison the
plasmon energies which were obtained by inserting the same parameters as we used to solve
equation (12) in (15). The difference in plasmon energies may be a useful way of probing the
Wigner lattice and electron liquid phases of electrons on a spherical surface.

Throughout the rest of the paper, we will concentrate on the dipolar plasmon energy in
a finite magnetic field since in the long wavelength limit, light excites only this mode. This
means that we have to solve equation (12) for l = 1. We now determine the range over which
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Figure 2. This figure shows the dependence of dipolar plasmon energy on the magnetic field for
three different spheres with LF = 20 and 882 electrons. The x axis shows p, the number of flux
quanta piercing through the sphere. The radii of the spheres are 3980 au (stars), 5117 au (triangles)
and 7960 au (diamonds). The dotted, dashed and dash–dotted curves represent the fits obtained by
using equation (16) for these parameters respectively.

we should carry out summations over initial state l ′ and final state L in the five 3 j symbols in
equation (8). We need to include only those terms for which the Wigner 3 j symbol is not zero
in each case.

We can now start considering each Wigner 3 j symbol separately. The first term

which involves
( l l′ L

0 0 0

)2
is the only term that survives in the limit of zero magnetic field

where the other four terms with p dependence vanish. This Wigner symbol is zero unless
|L − l ′| � 1 � L + l ′, which implies that the l ′ summation for this term runs from LF − 1
to LF while the L summation runs from l ′ to l ′ + 1. Obviously, the only allowed one-particle

excitations here range from LF to LF + 1. The next two terms involve
( l l′ L + 2

0 0 0

)2
and( l l′ − 2 L

0 0 0

)2
. They vanish unless |L +2− l ′| � 1 � L + l ′ +2 and |L − l ′ +2| � 1 � L + l ′ −2

respectively. These inequalities can never be satisfied since the final angular momentum state
L is always greater than the initial l ′; hence these excitations do not contribute in summations
over initial and final angular momentum states.

Finally, let us consider the remaining two terms, namely those that involve
( l l′ + 2 L

0 0 0

)2

and
( l l′ L − 2

0 0 0

)2
. They vanish unless |L−l ′−2| � 1 � L+l ′+2 and |L−l ′−2| � 1 � L+l ′−2

respectively. This means that the summation over l ′ for these terms runs from LF − 3 to LF

while the summation over L runs from l ′ to l ′ +3. For example, an excitation from LF to LF +3
is allowed for these terms even though we are exciting the sphere with an l = 1 mode. This is
a consequence of the magnetic field which introduces a coupling between l = 1 and 3 modes.
In the absence of a magnetic field, p = 0 and these two terms vanish, and the l = 1 and 3
modes decouple.

In figure 2 we show the dipolar plasmon energy as a function of the number of flux quanta
piercing through the sphere for three different radii for an electron density corresponding
to LF = 20. The magnetic fields corresponding to p = 1 for these systems are 143 G
(r0 = 3980 au), 86.5 G (r0 = 5117 au) and 35.75 G (r0 = 7960 au). As the magnetic field
is increased, the dipolar plasmon energy starts increasing from its zero-field value which is
just the l = 1 plasmon to a value somewhere between the zero-field values of ω1 and ω3.
For example, ω1 = 1.06 cm−1 and ω3 = 1.71 cm−1 for r = 7960 au in figure 2. For finite
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Figure 3. This figure shows the dependence of the dipolar plasmon energy on the magnetic field
for three different spheres with LF = 41 and 3528 electrons. The x axis shows p, the number
of flux quanta piercing through the sphere. The radii of the spheres are 3980 au (stars), 5117 au
(triangles) and 7960 au (diamonds).

magnetic field, the l = 1 and 3 modes are coupled and as the strength of the field increases, so
does the weight of the l = 3 contribution resulting in the increasing blue-shift of the dipolar
plasmon mode as a function of the magnetic field. We should also point out that the blue-shift
is larger for the same number of flux quanta for smaller spheres. The reason for this is that for
fixed p and LF, the deviation from the plasmon energy at zero magnetic field is controlled by
the multiplication factor 1/r2

0 in equation (8).
In figure 3, we show the magnetic field dependence of the dipolar plasmon energies for the

same size spheres as in figure 2 but with electron densities four times larger, i.e. LF = 41. The
zero-field plasmon energies for all radii are about twice as large as in figure 2 due to the linear
dependence on the Fermi angular momentum number in the Lindhard response function. In
essence, figures 2 and 3 together reveal that the outcome of changing the radius while keeping
the number of electrons constant is to rigidly shift the curve up or down.

The last point we have to touch upon as regards these figures is the strength of the magnetic
field where the perturbative approach fails. We should recall the perturbed wavefunction
equation (5) in order to understand this. Since all excitations take place around LF, the most
strongly contributing angular momenta l are those close to LF. This means that when p2 starts
approaching LF, the second and third terms in the perturbed wavefunction become comparable
to the first one due to the p2/ l factor. In this limit, our current first-order perturbative treatment
fails and higher angular momentum spherical harmonics need to be included. For this reason,
we only plotted our figures up to the point where the dipolar plasmon energy saturated. This
corresponds to p = 3.6 in figure 2 where LF = 20 and p = 5.2 in figure 3 where LF = 41.
Our present treatment is valid up to these p values. We believe that the saturation in the dipolar
plasmon energies is an artefact of first-order perturbation theory and that the plasmon energies
would continue to increase with p if we used a higher order perturbation theory.

Next, we will investigate the behaviour of the dipolar plasmon energy as a function of the
number of electrons for constant radius and try to elucidate the nature of the mixing between
different modes explicitly for a weak magnetic field. In figure 4 we plotted the l = 1 and 3
plasmon energies in zero magnetic field for a sphere of radius 3980 au alongside the dipolar
plasmon energy when a uniform magnetic field of 0.029 T is applied. The plasmon energies
are proportional to the square root of the number of electrons in zero magnetic field. In the
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Figure 4. This figure shows the dependence of the dipolar plasmon energy on the number of
electrons on the sphere. The radius is constant and 3980 au. Diamonds and stars denote the
plasmon energies for l = 1 and 3 modes respectively in zero magnetic field. Triangles represent
the dipolar plasmon energies when a magnetic field of 0.029 T is applied on the sphere.

presence of a magnetic field, the dipolar plasmon mode consists of an admixture of l = 1 and
3 modes. The figure reveals that as the number of electrons increases, the weight of the l = 3
mode decreases and the plasmon energy approaches that of the zero-field l = 1 plasmon. We
can explain this by considering equation (8). The contribution of the l = 3 mode is contained
only in the last two terms. Increasing the number of electrons on the sphere means increasing
the Fermi angular momentum number LF. For example, N = 4050 and 10 658 correspond to
LF = 44 and 72 respectively in figure 4. Thus for fixed p the factors p4/L2 and p4/ l ′2 in the
last two terms in equation (8) decrease, which reduces the weight of the l = 3 contribution in
the plasmon mode.

Finally, we will try to demonstrate the nature of the coupling between ω1 and ω3 modes
in the presence of a magnetic field by using a simple qualitative equation which has the form

ω1(p) = ω1 + p2

LF
ω3√

1 + p4

L2
F

. (16)

This equation is reminiscent of the perturbed wavefunctions that we used in our RPA
calculations and phenomenologically describes the coupling of the l = 1 and 3 plasmons for
finite magnetic field. In figure 2, we plotted this equation alongside the numerically calculated
plasmon energies for three spheres with different radii. LF = 20 and the number of electrons
is 882 for all spheres. It is clear from this figure that this phenomenological equation agrees
very well with the numerical data that were obtained by solving equation (12).

Although the present application concerned the magnetic field dependence of the optically
active dipolar plasmon, we expect higher multipolar plasmons to also exhibit a magnetic field
dependence. For a given angular momentum l, the mixing of electronic wavefunctions of
different angular momentum, equation (5), will result in a plasmon mode containing also l − 2
and l + 2 components. Since ωl is a non-monotonic function of l, the magnetic field dependent
mixing will introduce a magnetic field dependent shift of the plasmon resonances.

4. Conclusions

In this paper, we investigated the optical properties of a two-dimensional electron gas
constrained on a spherical surface in the presence of a weak uniform magnetic field which
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causes a Zeeman shift in the electronic energy levels. We treated this problem perturbatively
within the random phase approximation scheme. We concentrated on the behaviour of the
dipolar plasmon energy in particular. We showed that there is a blue-shift in this plasmon mode
compared to its value at zero magnetic field and that the shift tends to increase as a function of the
magnetic field. This blue-shift can be explained as a magnetic field strength dependent mixing
between the ω1 and ω3 plasmons. Although the present application concerned thin electronic
shell structures, the physical mechanism responsible for the magnetic field dependence of the
plasmon energies may apply also for nanoparticles of finite shell thickness such as metallic
nanoshells. A magnetic field induced tunability of the dipolar plasmon energy of metallic
nanoparticles may be useful in developing nanophotonics applications such as magneto-optical
switches. Further generalizations of this model to electronic shells of finite thickness are left
for future studies.
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